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Abstract:
Objective: Presently, one of the most common oral diseases is dental caries, which is a biofilm-mediated disease. 

Lawsone methyl ether (LME) has shown promising antibacterial activity due to its 1,4-napthoquinone structure. Recently, 

a 1,2,3-triazole scaffold has been used in the structural modification of potential antimicrobial agents. To develop novel 

anticaries agents, the structure modification of 1,4-napthoquinone with N-substituted 1,2,3-triazole, therefore, may be 

a candidate. 

Material and Methods: LME was used as a lead compound, and three new lawsone derivatives were prepared by two-

step reactions. Their antimicrobial effects against three dental caries pathogens; including S. mutans, L. casei, and A. 

naeslundii were investigated, using the microdilution technique (0.78-100 µg/mL). A growth curve assay was performed to 

assess the effects of compounds on the growth kinetics of bacteria. Moreover, the effect of synthetic lawsone derivatives 

on the biofilm formation of S. mutans was also evaluated by crystal violet assay. 

Results: Overall, S. mutans was most sensitive to lawsone derivatives (minimum inhibitory concentration (MIC)=1.56-

50 µg/mL), followed by A. naeslundii and L. casei: corresponding to their growth curves. Lawsone derivatives, at the 
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concentration of 1/2 MIC and 1/4 MIC, inhibited 12-hour S. mutans biofilm formation by 86.0-98.0%. The inhibitory effect 

decreased with decreasing concentrations and increasing incubation times. 

Conclusion: Synthetic lawsone derivatives have an inhibitory effect on the growth of three tested cariogenic bacteria, 

and the biofilm formation of S. mutans. The compounds exhibited anti-cariogenic bacterial strains and satisfying anti-

biofilm formation effects on S. mutans.  

Keywords: antibacterial activity, anticaries, dental biofilm, lawsone derivatives, naphthoquinone, triazole

Introduction
 Dental caries is a biofilm-mediated disease that 

causes localized demineralization and damage to dental 

hard tissue. Untreated dental caries in permanent teeth 

is the most common health overburdening condition 

worldwide.1 Primary etiological factors that play a critical role 

in developing dental caries are microorganisms in dental 

biofilm; especially facultatively and obligately anaerobic 

bacteria.2-3 Streptococcus mutans is the primary etiological 

pathogen of dental caries, which plays an important role 

in developing cariogenic biofilms.4 Actinomyces naeslundii 

is another early colonizer that has been implicated in the 

formation of root caries lesions.5 Lacticaseibacillus casei 

is an acidogenic and aciduric bacteria, which is also well-

known as an etiological pathogen of dental caries found in 

caries lesions.6

 Lawsone (2-hydroxy-1,4-naphthoquinone) is a 

bioactive, natural substance found in Lawsonia inermis that 

has exhibited antibacterial and antifungal properties.7-9 The 

fundamental pharmacophore responsible for its antimicrobial 

activity is the p-quinone moiety. The mitochondrial 

respiratory chain of the bacteria is the target of lawsone’s 

antimicrobial and antifungal actions. The p-quinone moiety 

undergoes a redox reaction with oxygen to produce reactive 

oxygen species (ROS), which can cause intracellular 

damage and apoptosis. During the Michael addition reaction 

with bacterial biomolecules, the quinone ring also acts as 

an electrophile, disrupting their normal function.9-10

 The incorporation of a five-membered 1,2,3-triazole 

moiety to the 1,4-naphthoquinone scaffold has resulted 

in potent antimicrobial and antifungal analogues.11-12 In 

addition, many naturally occurring compounds derived with 

triazole moiety showed potent antimicrobial activity; for 

example, flustramine C-inspired pyrroloindoline-3-triazole 

amides13, indole-triazole amide conjugates14, oroidin-triazole 

conjugates15, 2-aminoimidazole triazole conjugates16, 

TAGE-triazole conjugates17, pyrazolo-[3,4-b]pyridine-

triazole conjugates18, triazole containing naamine A and 

isonaamine A mimics19, and triazole derivatives of geraniol 

and farnesol20 were found to inhibit the biofilm formation of 

several Gram-negative and Gram-positive bacteria.

 Inspired by the incorporation of 1,2,3-triazole 

functionality in the 1,4-naphthoquinone and other natural 

scaffolds, in this ongoing project for the discovery of 

new anticaries agents, 3 lawsone derivatives containing 

N-substituted 1,2,3-triazole were designed and synthesized.  

These were then evaluated for their anticariogenic 

pathogens and antibiofilm activity. To our knowledge, none 

of the naphthoquinone-containing 1,2,3-triazole derivatives 

have been investigated for anticaries properties. The 

design of lawsone derivatives containing N-substituted 

1,2,3-triazole may provide opportunities for the development 

of novel anticaries agents.
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Material and Methods
 Chemicals used in the preparation of the compounds 

were purchased from Sigma-Aldrich or Merck AG. The 

progress of reactions and the purities of the compounds 

were detected by thin layer chromatography (TLC), on 

silica gel 60 F254 aluminum sheets (Merck AG). Melting 

points were recorded using the Mel-TEMP II laboratory 

devices, USA. Infrared spectroscopy (IR) spectroscopy 

were performed on a Perkin Elmer spectrum and absorption 

bands were shown in cm-1. 1H-Nuclear Magnetic Resonance 

(NMR) and 13C-NMR spectra were recorded by a BRUKER/ 

AVANCETM NEO using deuterated chloroform (CDCl
3
) 

or deuterated dimethyl sulfoxide (d
6
-DMSO) as solvent. 

NMR spectra splitting patterns were designated as follows: 

s: singlet; d: doublet; m: multiplet. High-resolution Mass 

spectrometry (HR-MS) spectra were recorded on a Thermo 

Finnigan MAT 95XL.

 Synthesis of lawsone derivatives containing 

N-substituted 1,2,3-triazole

 Synthesis of lawsone derivatives containing 

N-substituted 1,2,3-triazole started from the synthesis 

of 2-(prop-2-ynyloxy)naphthalene-1,4-dione (compound 

1)21, and synthesis of azide derivatives (3a–3c), and 

subsequently the synthesis of the 1,2,3-triazole analogues 

(compound 4a-4c), via copper-catalyzed azide-alkyne 

cycloaddition (CuAAC) reaction.22 (Scheme 1) 

 Synthesis of 2-(prop-2-ynyloxy)naphthalene-

1,4-dione (1) 

 A solution of lawsone (100 mg, 0.58 mmol) in N,N-

dimethyl formamide was stirred at room temperature under 

a nitrogen atmosphere. K
2
CO

3
 (79.5 mg, 0.58 mmol) was 

added to the solution and the reaction mixture was stirred 

for 15 minutes. Propargyl bromide (61.5 mg, 0.58 mmol) 

was added to the reaction mixture and the mixture was 

further stirred for 72 hours. At completion of the reaction, 

the product was extracted by ethyl acetate (3x30 mL). The 

combined organic phase was washed with water (3x30 mL) 

and dried over anhydrous Na
2
SO

4
. The solid was filtered off, 

and the filtrate was concentrated under reduced pressure to 

produce the crude product. The product was then purified by 

column chromatography and recrystallization from hexane/

methanol.

 General method for the synthesis of azides (3a –3c)

 Sodium azide (3.16 mmol) was added into a solution 

of the corresponding alkyl halide (R-X) (1.5 mmol) in DMSO 

(10 mL), and the reaction mixture was stirred at room 

temperature under a nitrogen atmosphere for 24 hours. Iced 

water was poured into the reaction mixture, and the product 

was partitioned in diethyl ether (3x30 mL). The combined 

organic phase was washed with 5.0% sodium bicarbonate 

(1x30 mL) and distilled water (2x30 mL). The excess 

water was removed from the organic phase by addition of 

anhydrous Na
2
SO

4
. The solvent was removed by mean of 

rotary evaporation. The product was purified by silica gel 

column chromatography using dichloromethane:hexane 

(60:40) as eluent. 

 General method for the synthesis of lawsone 

derivatives containing N-substituted 1,2,3-triazole 

(4a–4c)

 2-(Prop-2-ynyloxy)naphthalene-1,4-dione (0.34 

mmol) and the corresponding azide (0.34 mmol) were 

dissolved in ethanol (25 mL), and the solution was stirred 

at room temperature. Then, CuSO
4
 (0.1 M, 66.37 µL) and 

copper powder (0.08 mmol) was added into the reaction 

mixture. Stirring was continued for 24 hours. The solid was 

filtered off and the filtrate was concentrated with a rotary 

evaporator. The residue was further purified by silica gel 

column chromatography using a mixture of dichloromethane/
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hexane (for 4a), dichloromethane/methanol (for 4b), or ethyl 

acetate/hexane (for 4c) as the mobile phase. The product 

was recrystallized from methanol/hexane as a yellow solid.

  Predictive physicochemical parameters 

 The SwissADME program (http://www.swissadme.

ch) was used to determine Mw, consensus log P, number 

of hydrogen bond donors and acceptors, rotatable bonds, 

topological polar surface area (tPSA), water solubility and 

skin permeation of the lawsone derivatives.23-24

 Bacterial strains and growth conditions

 For all the experiments, bacterial strains used in 

this study included: Streptococcus mutans (DMST 41283), 

Lacticaseibacillus casei (TISTR 1463), and Actinomyces 

naeslundii (TISTR 2426). All strains were grown on an 

agar media for two days before being transferred to liquid 

media under the same growth conditions used throughout 

the study. S. mutans and A. naeslundii were grown on BHI 

agar plates (HiMedia Laboratories, Mumbai, India) at 37°C 

in the presence of 5.0% CO
2
; additionally, L. casei was 

grown on MRS agar plates (HiMedia Laboratories, Mumbai, 

India) at 37°C in the presence of 5.0% CO
2
. 

 Overnight cultures of each strain were subcultured 

and grown until they reached the mid-exponential phase, 

so as to prepare bacterial cultures for all experiments. To 

verify the number of viable cells, colony-forming unit (CFU) 

counts of bacterial suspension were performed for each 

experiment using the drop plate method. The estimated 

numbers at the mid-exponential phase of each strain of 

viable cells were: 108 CFU/mL for S. mutans (6 hours) and 

L. casei (12 hours) and 107 CFU/mL for A. naeslundii (19 

hours).

 Antimicrobial activity

 The minimum inhibitory concentration (MIC) and 

minimum bactericidal concentration (MBC) values, using 

the microtiter broth dilution method and growth curve 

assay in 96-well microtiter plates, were used to determine 

Scheme 1 Synthesis pathway of the 1,2,3-triazoles; (a) K
2
CO

3
/ propargyl bromide/ DMF/ r.t. 72 h; (b) NaN

3
/ DMSO/ 

r.t. 24 h (c) CuSO
4
/ Copper powder/ EtOH/ r.t. 24 h 
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antimicrobial activities of lawsone derivatives containing 

N-substituted 1,2,3-triazole. Stock solutions of the synthetic 

compounds were prepared in 5 mL vials by being dissolved 

in DMSO 20.0% and ethanol 4.0% to a final concentration 

of 400 µg/mL. Then, the serial dilutions for synthetic 

compounds 4a-4c were made; ranging from 0.195-100 µg/

mL Chlorhexidine (CHX) was used as a positive control for 

antibacterial activity as it is commonly used as an antiseptic 

mouthwash, which possesses broad -spectrum antimicrobial 

activity.25 Broth solutions were used as a negative control.

 Bacterial cultures were diluted to approximately 105 

CFU/mL utilizing a sterile broth. From this suspension, 

100 µL was inoculated in each well, and incubated at 

37°C for 24 hours. The lowest concentrations of agents 

that completely inhibited bacterial growth in the wells (the 

first clear well) were taken as the MIC. Bacterial culture 

media from wells with no increased turbidity were collected 

and placed on agar plates for 24 hours of incubation. The 

MBCs were identified by the lowest concentration, which 

resulted in negative bacterial growth. The experiment was 

independently repeated three times to confirm activity.

 The growth curve assay was used to determine the 

effects of synthetic compounds 4a-4c on growth kinetics. 

Similar to the microtiter broth dilution technique, bacterial 

strains (105 CFU/mL) were placed in 96-well microtiter 

plates and incubated using different concentrations of 

synthetic compounds 4a-4c: as described above. A 

microplate reader (Multiskan GO, Thermo Fisher Scientific, 

Waltham, MA, US) was used to record the absorbance value 

of each well, at a wavelength of 62026, 60027, and 66028 nm 

for S.mutans, L. casei, and A. naeslundii, respectively, every 

2 hours until the bacterial growth reached the stationary 

phase of each strain. Then, graphs as a function of time in 

hours on the X-axis versus optical density on the Y-axis, 

were plotted to obtain the growth curves of bacteria.

 Antibiofilm activity

 The bacterial suspension, 105 CFU/mL of S. mutans 

50 µL, was placed in 96-well microtiter plates and incubated 

in 1/2-1/8 MIC; with the presence of 5.0% (w/v) sucrose. 

Wells without synthetic compounds 4a-4c served as 

controls. The media and unbound cells were decanted after 

12 and 24 hours of incubation. The remaining planktonic 

cells were gently rinsed away with distilled water. The 

attached cells (biofilms) were stained with 0.1% crystal 

violet for 15 minutes at room temperature. After two rinses 

with distilled water, 95.0% ethanol was added and the 

plates were shaken for 10 minutes to allow for the full 

release of the dye. At wavelength 595 nm, the absorbance 

of extracted crystal violet in ethanol was measured. The 

inhibition percentages were calculated using the following 

formula: 

 Statistical analysis

 Line graphs were used to display the changes in 

absorbance value of bacteria with the presence of synthetic 

compounds 4a-4c over time (bacterial growth curves). 

The Kruskal-Wallis H test was used to determine the 

difference in the percentage of 12-hour and 24-hour biofilm 

inhibition among sub-MIC concentrations of each synthetic 

compound. The software STATA version 13.1 (StataCorp, 

College Station, Texas) was used for the analysis of the 

data.

Results
 Synthesis of lawsone derivatives (4a-4c)

 The target triazole derivatives can be synthesized via 

3-step synthesis. In every step, the intermediates and final 

products were prepared in high yields, and their chemical 

structures were confirmed by IR, 1H-NMR, 13C-NMR 

spectroscopy and HR-MS.
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 2-(prop-2-ynyloxy)naphthalene-1,4-dione  

(1) Yellow solid. (73.1%); m.p. 149-151°C; IR (cm-1, neat): 

3252.1, 3054.1, 2923.8, 1681.9, 1605.7, 1458.4, 1257.4, 

1016.2, 722.2, 696.3; 1H-NMR (ppm, CDCl
3
): 2.65 (1H, s), 

4.81 (2H, s), 6.36 (1H, s), 7.74 (2H, m), 8.07 (1H, d), 8.14 

(1H, d); 13C-NMR (ppm, CDCl
3
): 56.74, 75.44, 78.20, 111.61, 

126.24, 126.75, 131.05, 131.89, 133.48, 134.38, 158.05, 

179.83, 184.71; HR-MS (m/z, [M+1]+): 213.0531 (calcd for 

C
13
H

8
O

3,
 212.0473)

 Benzyl azide (3a) colorless liquid (89.6%); IR (cm-1, 

neat):  3338.5, 3032.7, 2931.1, 2097.6, 1455.3, 1256.2, 

737.6, 699.1; 1H-NMR (ppm, CDCl
3
):  4.33 (2H, s, 1-CH2), 

7.30-7.39 (5H, m, aromatic H); 13C-NMR (ppm, CDCl
3
): 

54.82, 128.23, 128.32, 128.85, 135.37; HR-MS (m/z, 

[M+1]+): 134.0951 (calcd for C
7
H

7
N

3
, 133.0643)

 1-(azidomethyl)-4-vinylbenzene (3b) brown 

solid (93.0%); m.p. 284-285°C; IR (cm-1, neat): 3341.5, 

3088.7, 2978.7, 2099.0, 1609.2, 1447.0, 1273.1, 1046.8, 

822.5, 767.8; 1H-NMR (ppm, DMSO-d
6
): 4.42 (2H, s), 

5.26, 5.29 (1H, d, J=11.8 Hz), 5.82-5.89 (1H, d, J=18.6 

Hz), 6.71-6.77 (1H, m), 7.33, 7.35 (2H, d, J=8.1 Hz), 7.48, 

7.50 (2H, d, J=8.2 Hz); 13C-NMR (ppm, DMSO-d
6
): 53.70, 

115.16, 126.88, 129.17, 135.60, 136.59, 137.44; HR-MS 

(m/z, [M+1]+): 160.0372 (calcd for C
9
H

9
N

3,
 159.0796)   

 2-(2-azidoethyl)isoindoline-1,3-dione (3c) 

white solid (98.2%); m.p. 82-83°C; IR (cm-1, neat): 3011.7, 

2919.2, 2332.1, 1681.6, 1650.0, 1607.9, 1438.3, 1258.8, 

1201.2, 1012.9, 778.0,723.9; 1H-NMR (ppm, CDCl
3
): 3.58-

3.61 (2H, t, J=6.0 Hz), 3.89-3.91 (2H, t, J=.06 Hz), 7.73-

7.75 (2H, dd, J=3.0, 5.5 Hz), 7. 68, 7.88 (2H, dd, J=3.0, 5.5 

Hz); 13C-NMR (ppm, CDCl
3
): 36.84 48.95, 123.45, 131.82, 

134.17, 168.00, 137.44; HR-MS (m/z, [M+1]+): 217.0720 

(calcd for C
10
H

8
N

4
O

2,
 216.0647)

 2-((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy)

naphthoquinone-1,4-dione (4a) Yellow solid. (97.2%); 

m.p. 160-161°C; IR (cm-1, neat): 3067.5, 2929.3, 16842, 

1607.9, 1456.5, 1242.6, 1009.9, 782.0, 723.7; 1H-NMR 

(ppm, DMSO-d
6
): 5.23 (2H, s), 5.63 (2H, s), 6.60 (1H, s,), 

7.31-7.39 (5H, m), 7.79-7.87 (2H, m), 7.96-7.99 (2H, m), 

8.36 (1-H, s); 13C-NMR (ppm, DMSO-d
6
): 53.07, 62.51, 

111.05, 125.64, 125.68, 126.23, 128.13, 128.34, 128.92, 

130.96, 131.61, 133.78, 134.64, 136.01, 141.25, 159.08, 

179.59, 184.63; HR-MS (m/z, [M+1]+): 346.1186 (calcd for 

C
20
H

15
N

3
O

3,
 345.1113)  

 2-((1-(4-vinylbenzyl)-1H-1,2,3-triazol-4-yl)

methoxy)naphthoquinone-1,4-dione (4b) Yellow solid. 

(69.6%); m.p. 128-129°C; IR (cm-1, neat): 3136.7, 3006.4, 

1686.4, 1605.0, 1471.9, 1240.9, 1010.3, 774.1, 717.5; 
1H-NMR (ppm, DMSO-d

6
): 5.25-5.29 (3H, m), 5.64 (2H, s), 

5.82, 586 (1H, d, J=17.6 Hz), 6.62 (1H, s), 6.70-6.76 (1H, 

m), 7.32, 7.33 (2H, d, J=8.0 Hz), 7.48, 7.49 (2H, d, J=8.0 

Hz), 7.81-7.88 (2H, m), 7.97-8.00 (2H, m), 8.38 (1H, s); 
13C-NMR (ppm, DMSO-d

6
): 53.12, 62.81, 111.36, 115.40, 

125.99, 126.03, 126.58, 126.99, 128.83, 131.28, 131.93, 

134.14, 135.00, 135.85, 136.51, 137.56, 141. 85, 159.41, 

179.94, 185.01; HR-MS (m/z, [M+1]+): 372.1343 (calcd for 

C
22
H

17
N

3
O

3,
 371.1270) 

 2-(2-(4-((1,4-dioxo-1,4-dihydronaphtalen-

2-yloxy)methyl)-1H-1,2,3-triazol-1-yl)ethyl)

isoindoline-1,3-dione (4c) Yellow solid. (61.4%); m.p. 

244-245°C; IR (cm-1, neat): 3140.4, 2927.8, 1713.0, 1607.5, 

1395.5, 1241.3, 782.8, 720.5; 1H-NMR (ppm, DMSO-d
6
): 

3.99-4.01 (2H, t, J=5.7 Hz), 4.66-4.68 (2H, t, J=5.7 Hz), 

5.22 (2H, s), 6.55 (1H, s), 7.75-7.87 (6H, m), 7.95-8.00 

(2H, m), 8.35 (1H, m); 13C-NMR (ppm, DMSO-d
6
): 38.33, 

48.06, 62.68, 111.55, 123.54, 125.99, 126.19, 126.52, 131.26, 

130.82, 131.94, 134.08, 134.91, 134.95, 141.30, 159.1, 

167.78, 179.93, 184.88; HR-MS (m/z, [M+1]+): 429.1195 

(calcd for C
23
H

16
N

4
O

5,
 428.1121) 

 Prediction of physicochemical parameters 

 The physicochemical properties of the synthesized 

compounds were predicted by the SwissADME calculator; 

based on the molecule’s lipophilicity, hydrogen bonding, 
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Table 1 Physicochemical descriptors and absorption, distribution, metabolism and excretion properties of tested compounds; 

calculated by SwissADME.

Code Chemical structure MWa LogPb HBDc HBAd tPSAe(Å2) Rotatable 
Bonds

Water solubility

Lawsone 174.15 1.21 1 3 54.37 0 Soluble

LME 188.18 1.43 0 3 43.37 1 Soluble

1 212.20 1.73 0 3 43.37 2 Soluble

4a 345.35 2.42 0 5 74.08 5 Poorly  
soluble

4b 371.39 2.97 0 5 74.08 6 Poorly  
soluble

4c 428.40 1.80 0 7 111.46 6 Poorly  
soluble

aMW=molecular weight, blog P=predicted octanol/water partition coefficient log P, cHBD=H-Bond Donors, dHBA=H-Bond Acceptors, 
etPSA=topological polar surface area 

rotatable bonds, and topological polar surface area 

compared to lawsone and Lawsone methyl ether (LME): 

as shown in Table 1.  

 Antimicrobial activity

 Table 2 shows the MIC and MBC values of synthetic 

N-substituted 1,2,3-triazole (4a-4c) against S. mutans, L. 

casei, and A. naeslundii. Overall, the synthetic compounds 

4a-4c exhibited the most potent antimicrobial activity 

against S. mutans (MIC 6.25-50 µg/mL), followed by A. 

naeslundii (MIC 25-50 µg/mL), and were the least active 

against L. casei. However, MBC values could not be 

determined for all synthetic compounds tested. 

 The growth curves of S. mutans, L. casei, and A. 

naeslundii demonstrated that the presence of 4a-4c at 
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the concentrations of 1/2 MICs prolonged the lag phase, 

reduced the slope of the exponential phase and decreased 

the peak absorbance (Figure 1). 

 Antibiofilm activity

 Figure 2 shows that sub-MIC concentrations of all 

synthetic N-substituted 1,2,3-triazole (4a-4c) reduced 

the biofilm formation of S. mutans at 12 and 24 hours. 

The percentage of biofilm inhibition decreased with 

decreasing concentration; however, there was no statistically 

significant difference for each synthetic compound. At the 

concentrations of 1/2 MIC, the synthetic compounds 4a-4c 

inhibited 12-hour biofilm formation by 96.87–98.71%. The 

inhibitory effect on 24-hour biofilm formation decreased to 

69.71–81.55%. When the concentrations of all synthetic 

compounds were 1/4 MIC and 1/8 MIC, the 24-hour biofilm 

inhibition decreased to less than 40.0%. 

Discussion 
 The 1,2,3-triazole scaffold was chosen in the design 

and synthesis of the target compounds because of its 

chemical and biological features. The scaffold has aromatic 

stability, resistance to acid−base hydrolysis, high dipole 

moment, and the ability to form H-bonds.29 Furthermore, 

the triazole moiety readily associates with biological targets; 

Table 2 MIC and MBC values of synthetic lawsone derivatives containing N-substituted 1,2,3-triazole (4a-4c) and 

chlorhexidine gluconate against S.mutans, L.casei, and A.naeslundii.

 

Microorganisms 4a 4b 4c LME37 CHX

MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC

S.mutans 6.25 >100 6.25 >100 50 >100 1.56 >100 1.95 15.6

L.casei >100 >100 >100 >100 >100 >100 50 >100 15.6 31.25

A.naeslundii 25 >100 6.25 >100 50 >100 6.25 100 1.95 3.9

MIC=minimum inhibitory concentration, MBC=minimum bactericidal concentration, CHX=chlorhexidine gluconate, LME=lawsone methyl 

ether, MIC and MBC are expressed in micrograms per milliliter (µg/mL)

such as deoxyribonucleic acid (DNA) via H-bonds and other 

noncovalent interactions, which improves the solubility and 

metabolic stability of the compound.30 Copper-catalyzed 

azide-alkyne cycloaddition (CuAAC) is the most promising 

as well as widely utilized method for obtaining this product 

with high selectivity and yield.31

 LME is a 1,4-naphthoquinone derived from 

lawsone with improved antifungal and antimicrobial activity. 

Anaissi-Afonso et al. suggested that the polar hydroxyl 

group in the lawsone structure hinders its penetration 

through the bacterial plasma membrane.21 Sakunphueak 

and Panichayupakaranant proposed that the 2-methoxyl 

group in the LME structure promotes the absorption of 

LME molecules through the microbial cell membrane and 

increased its antimicrobial potency.9 This was the motivation 

for the modification of the 2-hydroxyl group of the lawsone 

molecular structure to have more lipophilic moiety. 

 This present study demonstrated that the synthetic 

lawsone derivatives containing N-substituted 1,2,3-triazole 

possessed potent antibacterial activity against S. mutans, 

and moderate to potent activity against A. naeslundii. 

However, L. casei was resistant to these compounds. These 

synthetic lawsone derivatives contain two pharmacophores, 

quinone moiety in 1,4-naphthoquinone and triazole 



Journal of Health Science and Medical Research                                                   J Health Sci Med Res 2023;41(2):e20229069

Ratti P, et al.Anticaries Activities of Lawsone Derivatives

Figure 1 Growth curves of three bacterial strains with the presence of synthetic lawsone derivatives containing N-substituted 

1,2,3-triazole (4a-4c) at the concentrations of 1/2 MICs; A. S. mutans; B. L. casei; C. A. naeslundii
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moiety that may exert enhanced antibacterial activity 

of their precursor, which is lawsone. Sakunphueak and 

Panichayupakaranant reported that the MIC of LME against 

S. mutans equaled 31.2 µg/mL, while the MIC of lawsone 

was higher than 500 µg/mL.9 In this study, it was found 

that the MICs of synthetic lawsone derivatives containing 

N-substituted 1,2,3-triazole against S. mutans equaled 

6.25 µg/mL for 4a and 4b and 50 µg/mL for 4c. This may 

indicate that the structural modification of these synthetic 

lawsone derivatives possess improved antibacterial potency 

compared to their precursor. Since these compounds are 

more lipophilic, they may be able to penetrate bacterial 

cell membranes and reach the target of quinone moiety; 

which is a mitochondrial respiratory chain and bacterial 

biomolecules better than lawsone. The difference in oxygen 

requirements among tested strains may be the explanation 

for different antibacterial potency. L. casei, which is resistant 

to our synthetic lawsone derivatives, is an oxygen-tolerant 

anaerobes32; therefore, the lawsone derivatives did not 

affect the mitochondrial respiratory chain. While the other 

two strains are facultative anaerobes33-34, which consume 

oxygen; resulting in ROS generation in mitochondria and 

subsequently cell destruction.

 This study demonstrated that synthetic lawsone 

derivatives containing N-substituted 1,2,3-triazole have 

outstanding antibiofilm properties against S. mutans. Biofilm 

formation at 12th hour was reduced by more than 95.0% 

via lawsone derivatives at the concentration of 1/2 MIC. 

Although, antibiofilm activity of lawsone derivatives is dose- 

and time- dependent, even the inhibitory effect declined 

with time, and the percentages of biofilm formation of 1/2 

MIC lawsone derivatives were still satisfying. The plausible 

Figure 2 Percentage of inhibition of 12-hour and 24-hour S. mutans biofilm formation, by synthetic lawsone derivatives, 

containing N-substituted 1,2,3-triazole (4a-4c) at concentrations of 1/2 MIC, 1/4 MIC, and 1/8 MIC

MIC=minimum inhibitory concentration
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mechanisms of the inhibitory effect on S. mutans biofilm 

formation are: (i) these compounds inhibited the growth of 

S. mutans and thus affected the biomass of formed biofilm; 

(ii) they may promote bacterial aggregation, which results 

in less bacterial adherence; (iii) they may be able to inhibit 

the activity of glucosyltransferase, which is an essential 

enzyme of S. mutans for the synthesis of extracellular 

polysaccharides; the sticky matrix of biofilm.35-36 However, 

the crystal violet assay used in this study could only 

measure the biofilm biomass. Further studies with other 

biofilm methods are required to explore the antibiofilm 

mechanism of these compounds.

 Although the synthetic lawsone derivatives containing 

N-substituted 1,2,3-triazole in this study did not exhibit 

antibacterial potency comparable to the positive control 

(CHX), they still possess one valuable feature, this being 

antibiofilm activity against S. mutans. Such a specific effect 

on S. mutans biofilm formation, without any lethal effect on 

bacteria. Maybe even desirable and advantageous. This 

is because it means that these compounds selectively 

inhibit biofilm formation, a crucial process of dental caries 

formation, without disturbing the oral microbiome; including 

nonpathogenic microorganisms. Therefore, this may suggest 

that synthetic lawsone derivatives containing N-substituted 

1,2,3-triazole are anticaries candidates. Hence this could 

be developed as a conjunctive therapy for dental caries 

prevention; via antibiofilm agents used and by combining 

them with fluoride or other anticaries agents.

Conclusion 
 This in vitro study showed that synthetic lawsone 

derivatives containing N-substituted 1,2,3-triazole have 

some inhibitory effect against S. mutans and A. naeslundii, 

which are dental caries pathogens. However, another 

significant attribute of these compounds is their outstanding 

antibiofilm properties against S. mutans. This suggests the 

potential use of synthetic lawsone derivatives containing 

N-substituted 1,2,3-triazole in dental caries prevention; as 

they could be developed as conjunctive anticaries agents. 

However, this is only the beginning step, as further studies 

are required to investigate for more potential benefits; 

such as other anticaries properties, and further structural 

modifications and to explore the mechanisms of these 

compounds. 
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