Optical Coherence Tomography (OCT) and OCT Angiography (OCTA) Biomarkers for Diabetic Retinopathy in Type 2 Diabetes Mellitus: A Scoping Review
Abstract
Objective: This scoping review aims to identify the biomarkers of optical coherence tomography (OCT) and OCT angiography (OCTA) for the assessment of diabetic retinopathy (DR) in type 2 diabetes mellitus (T2DM) patients.
Material and Methods: A search was conducted on multiple databases, including Scopus, ScienceDirect, WOS, and PubMed, spanning from 2015 to 2023. The criteria were selected based on the PRISMA guidelines. The search focuses on the macular OCT and OCTA biomarkers.
Results: The search identified 114 studies, and 20 were included in the final review. OCT findings demonstrated a reduction in the thickness of retinal layers, mainly the ganglion cell layer (GCL) and inner plexiform layer (IPL), correlating inversely with the diabetes duration. OCTA enables precise assessment of retinal vascular changes, such as the foveal avascular zone (FAZ) area and vessel density (VD), indicating DR severity. Increased FAZ area was observed in proliferative DR (PDR), and decreased VD impacted visual acuity. Other parameters (FAZ shape, circularity index, paracentral interpapillary area, fractal dimension, vessel length density, and perfusion density) are also altered in diabetic eyes. OCTA of the choriocapillaris studies reveals increased flow voids in PDR patients.
Conclusion: The scoping review underscores the potential application of OCT and OCTA in deciphering DR pathophysiology and highlights novel biomarkers for its detection and diagnosis. Nevertheless, longitudinal studies are warranted to validate its clinical utility. This review emphasizes the importance of advancing OCT/OCTA technology to enhance DR assessment, and ultimately improve patient care.
Keywords
Full Text:
PDFReferences
Cho NH, Shaw JE, Karuranga S, Huang Y, Da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018;138:271-81. doi: 10.1016/j.diabres.2018.02.023.
Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045. Ophthalmology 2021;128:1580-91. doi: 10.1016/j.ophtha.2021.04.027.
Yang Z, Tan TE, Shao Y, Wong TY, Li X. Classification of diabetic retinopathy: Past, present and future. Front Endocrinol (Lausanne) 2022;13. doi: 10.3389/fendo.2022.1079217.
The Vision Academy, Lanzetta P, Sarao V, Scanlon PH, Barratt J, Porta M, et al. Fundamental principles of an effective diabetic retinopathy screening program. Acta Diabetol 2020;57:785-98. doi: 10.1007/s00592-020-01506-8.
Pramil V, Levine ES, Waheed NK. Macular vessel density in diabetic retinopathy patients: how can we accurately measure and what can it tell us? Clin Ophthalmol 2021;15:1517-27. doi: 10.2147/OPTH.S272328.
Rocholz R, Corvi F, Weichsel J, Schmidt S, Staurenghi G. Oct angiography (OCTA) in retinal diagnostics. In: High resolution imaging in microscopy and ophthalmology. Springer Cham 2019:135-160. doi: 10.1007/978-3-030-16638-0_6.
Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 2018;169:467-73. doi: 10.7326/M18-0850.
Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol 2005;8:19-32. doi: 10.1080/1364557032000119616.
Gozlan J, Ingrand P, Lichtwitz O, Cazet-Supervielle A, Benoudis L, Boissonnot M, et al. Retinal microvascular alterations related to diabetes assessed by optical coherence tomography angiography. Medicine (United States) 2017;96. doi: 10.1097/MD.0000000000006427.
Marques IP, Kubach S, Santos T, Mendes L, Madeira MH, De Sisternes L, et al. Optical coherence tomography angiography metrics monitor severity progression of diabetic retinopathy—3-year longitudinal study. J Clin Med 2021;10. doi: 10.3390/jcm10112296.
Shin YI, Nam KY, Lee SE, Lee MW, Lim HB, Jo YJ, et al. Peripapillary microvasculature in patients with diabetes mellitus: An optical coherence tomography angiography study. Sci Rep 2019;9. doi: 10.1038/s41598-019-52354-8.
Al-Nashar H, Al-Bialy H. Correlation between foveal microvasculature and inner retinal layer thickness in type 2 diabetes: an optical coherence tomography angiography study. Delta J Ophthalmol 2022;23:50. doi: 10.4103/djo.djo_13_21.
Li ST, Wang XN, Du XH, Wu Q. Comparison of spectral-domain optical coherence tomography for intra-retinal layers thickness measurements between healthy and diabetic eyes among Chinese adults. PLoS One 2017;12. doi: 10.1371/journal.pone.0177515.
Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 2015;35:2377-83. doi: 10.1097/IAE.0000000000000849.
Salz DA, de Carlo TE, Adhi M, Moult E, Choi W, Baumal CR, et al. Select features of diabetic retinopathy on swept-source optical coherence tomographic angiography compared with fluorescein angiography and normal eyes. JAMA Ophthalmol 2016;134:644-50. doi: 10.1001/jamaophthalmol.2016.0600.
Bhanushali D, Anegondi N, Gadde SG, Srinivasan P, Chidambara L, Yadav NK, et al. Linking retinal microvasculature features with severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 2016;57:519-25. doi: 10.1167/iovs.15-18901.
Al-Sheikh M, Akil H, Pfau M, Sadda SR. Swept-source OCT angiography imaging of the foveal avascular zone and macular capillary network density in diabetic retinopathy. Invest Ophthalmol Vis Sci 2016;57:3907. doi:10.1167/iovs.16-19570.
Samara WA, Shahlaee A, Adam MK, Khan MA, Chiang A, Maguire JI, et al. Quantification of diabetic macular ischemia using optical coherence tomography angiography and its relationship with visual acuity. Ophthalmology 2017;124:235-44. doi: 10.1016/j.ophtha.2016.10.008.
Garg I, Uwakwe C, Le R, Lu ES, Cui Y, Wai KM, et al. Nonperfusion area and other vascular metrics by wider field swept-source OCT angiography as biomarkers of diabetic retinopathy severity. Ophthalmol Sci 2022;2:100144. doi: 10.1016/j.xops.2022.100144.
Freiberg FJ, Pfau M, Wons J, Wirth MA, Becker MD, Michels S. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2016;254:1051-8. doi: 10.1007/s00417-015-3148-2.
Kim AY, Chu Z, Shahidzadeh A, Wang RK, Puliafito CA, Kashani AH. Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci 2016;57:OCT362-OCT370. doi: 10.1167/iovs.15-18904.
Wang W, Sun G, Xu A, Chen C. Proliferative diabetic retinopathy and diabetic macular edema are two factors that increase macrophage-like cell density characterized by en face optical coherence tomography. BMC Ophthalmol 2023;23. doi: 10.1186/s12886-023-02794-8.
Hirano T, Kitahara J, Toriyama Y, Kasamatsu H, Murata T, Sadda S. Quantifying vascular density and morphology using different swept-source optical coherence tomography angiographic scan patterns in diabetic retinopathy. Br J Ophthalmol 2019;103:216-21. doi:10.1136/bjophthalmol-2018-311942.
Bhardwaj S, Tsui E, Zahid S, Young E, Mehta N, Agemy S, et al. Value of fractal analysis of optical coherence tomography angiography in various stages of diabetic retinopathy. Retina 2018;38:1816-23. doi: 10.1097/IAE.0000000000001774.
Yospon T, Rojananuangnit K. Optical coherence tomography angiography (OCTA) differences in vessel perfusion density and flux index of the optic nerve and peri-papillary area in healthy, glaucoma suspect and glaucomatous eyes. Clin Ophthalmol 2023;17:3011-21. doi: 10.2147/OPTH.S429718.
Agemy SA, Scripsema NK, Shah CM, Chui T, Garcia PM, Lee JG, et al. Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina 2015;35:2353-63. doi: 10.1097/IAE.0000000000000862.
Hwang TS, Gao SS, Liu L, Lauer AK, Bailey ST, Flaxel CJ, et al. Automated quantification of capillary nonperfusion using optical coherence tomography angiography in diabetic retinopathy. JAMA Ophthalmol 2016;134:367. doi: 10.1001/jamaophthalmol.2015.5658.
Ong JX, Nesper PL, Fawzi AA, Wang JM, Lavine JA. Macrophage-like cell density is increased in proliferative diabetic retinopathy characterized by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 2021;32. doi: 10.1167/iovs.62.10.2.
Dodo Y, Suzuma K, Ishihara K, Yoshitake S, Fujimoto M, Yoshitake T, et al. Clinical relevance of reduced decorrelation signals in the diabetic inner choroid on optical coherence tomography angiography. Sci Rep 2017;7. doi: 10.1038/s41598-017-05663-9.
Chen Y, Zhu Z, Cheng W, Bulloch G, Chen Y, Liao H, et al. Choriocapillaris flow deficit as a biomarker for diabetic retinopathy and diabetic macular edema: 3-year longitudinal cohort. Am J Ophthalmol 2023;248:76-86. doi: 10.1016/j.ajo.2022.11.018.
Zerbini G, Maestroni S, Viganò I, Mosca A, Paleari R, Gabellini D, et al. Progressive thinning of retinal nerve fiber layer/ganglion cell layer (RNFL/GCL) as biomarker and pharmacological target of diabetic retinopathy. Int J Mol Sci 2023;24:12672. doi: 10.3390/ijms241612672.
Ulhaq ZS, Hasan YTN, Herawangsa S, et al. The retinal nerve fiber layer thickness is useful for the assessment of diabetic retinopathy severity. Diabet Epidemiol Manag 2022;7:100075. doi: 10.1016/j.deman.2022.100075.
Pires I, Santos AR, Nunes S, Lobo C. Macular Thickness Measured by Stratus Optical Coherence Tomography in Patients with Diabetes Type 2 and Mild Nonproliferative Retinopathy without Clinical Evidence of Macular Edema. Ophthalmologica 2013;229:181-6. doi:10.1159/000350593.
Satue M, Cipres M, Melchor I, Gil-Arribas L, Vilades E, Garcia-Martin E. Ability of Swept source OCT technology to detect neurodegeneration in patients with type 2 diabetes mellitus without diabetic retinopathy. Jpn J Ophthalmol 2020;64:367-77. doi: 10.1007/s10384-020-00729-0.
Aitchison RT, Kennedy GJ, Shu X, Mansfield DC, Kir R, Hui J, et al. Measuring the foveal avascular zone in diabetes: A study using optical coherence tomography angiography. J Diabetes Investig 2022;13:668-76. doi: 10.1111/jdi.13712.
Kim M, Choi SY, Park YH. Quantitative analysis of retinal and choroidal microvascular changes in patients with diabetes. Sci Rep 2018;8:12146. doi: 10.1038/s41598-018-30699-w.
Rosen RB, Andrade Romo JS, Krawitz BD, Mo S, Fawzi AA, Linderman RE, et al. Earliest evidence of preclinical diabetic retinopathy revealed using optical coherence tomography angiography perfused capillary density. Am J Ophthalmol 2019;203:103-15. doi: 10.1016/j.ajo.2019.01.012.
Sawada O, Ichiyama Y, Obata S, Ito Y, Kakinoki M, Sawada T, et al. Comparison between wide-angle OCT angiography and ultra-wide field fluorescein angiography for detecting non-perfusion areas and retinal neovascularization in eyes with diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2018;256:1275-80. doi: 10.1007/s00417-018-3992-y.
Kinuthia UM, Wolf A, Langmann T. Microglia and inflammatory responses in diabetic retinopathy. Front Immunol 2020;11. doi: 10.3389/fimmu.2020.564077.
Olver JM. Functional anatomy of the choroidal circulation: Methyl methacrylate casting of human choroid. Eye 1990;4:262-72. doi: 10.1038/eye.1990.38.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.