Phenotypic and Genomic Analysis of Enterococcus thailandicus MEDPSU_PRO_001 Isolated from Chicken Feces, a Potential Probiotic with Aggregation Ability
Abstract
Objective: This study aimed to explore the genotypic and phenotypic of Enterococcus thailandicus MEDPSU_PRO_001, a strain isolated from chicken feces, as a probiotic candidate through comprehensive in silico and in vitro analysis.
Material and Methods: This study examined the genetic characteristics of E. thailandicus MEDPSU_PRO_001 by using Oxford nanopore long-read sequencing sequences to identify significant genetic details associated with probiotic potential and pathogenicity; such as virulence factor genes and antibiotic-resistant genes, and the findings were supported by phenotypic assays.
Results: E. thailandicus MEDPSU_PRO_001, with a genome size of 2,771,294 bp, was analyzed for its probiotic potential. No antimicrobial resistance genes were identified, with a cutoff value of 80% identity; although vanY (33.91% identity) and aac(6’)-Ii (72.63% identity) genes were detected. Phenotypic studies confirmed the strain’s lack of resistance to vancomycin. Furthermore, genes associated with adherence; including ebpA, ebpB, ebpC, srtC, ecbA, and efaA and EPS cluster, were identified. This highlights their role in the adherence and aggregation of probiotic strains that were supported by phenotypic assays against probiotic and pathogens. Additionally, the presence of bacteriocin-encoding gene Laps was noted. No hemolysis activity supports the safety of this strain.
Conclusion: This comprehensive genomic analysis of E. thailandicus MEDPSU_PRO_001 reveals its beneficial characteristics; such as aggregation ability, as a potential probiotic. This study provides valuable insights into the probiotic nature of this strain, underscoring the safe utilization of E. thailandicus.
Keywords
Full Text:
PDFReferences
Fijan S. Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health 2024;11:4745-67. doi: 10.3390/ijerph110504745.
Zhang YJ, Li S, Gan RY, Zhou T, Xu DP, Li HB. Impacts of gut bacteria on human health and diseases. Int J Mol Sci 2015;16:7493-519. doi: 10.3390/ijms16047493.
Ghattargi VC, Gaikwad MA, Meti BS, Nimonkar Y, Dixit K, Prakash O, et al. Comparative genome analysis reveals key genetic factors associated with probiotic property in Enterococcus faecium strains. BMC Genomics 2018;19:652.doi: 10.1186/s12864-018-5043-9.
Wang X, Yang Y, Huycke MM. Risks associated with enterococci as probiotics. Food Res Int 2020;129:108788. doi: 10.1016/j.foodres.2019.108788.
Byappanahalli MN, Nevers MB, Korajkic A, Staley ZR, Harwood VJ. Enterococci in the environment. Microbiol Mol Biol Rev 2016;76:685-706. doi: 10.1128/mmbr.00023-12.
EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific opinion on establishing food-based dietary guidelines. EFSA Journal 2010;8:1460. doi: 10.2903/j.efsa.2010.1460.
Tanasupawat S, Sukontasing S, Lee JS. Enterococcus thailandicus sp. nov., isolated from fermented sausage (‘mum’) in Thailand. Int J Syst Evol Microbiol 2008;58:1630-4. doi: 10.1099/ijs.0.65535-0.
Nam Hee K, Hye Won K, Sun Min P, Go Hun S, Tae Jin C, Ha Ry Y, et al. Virulence patterns and prevalence of seven Enterococcus species isolated from meats and leafy vegetables in South Korea. Food Control 2020;108:106867. doi: 10.1016/j.foodcont.2019.106867.
Kim Y, Choi SI, Jeong Y, Kang CH. Evaluation of Safety and Probiotic Potential of Enterococcus faecalis MG5206 and Enterococcus faecium MG5232 Isolated from Kimchi, a Korean Fermented Cabbage. Microorganisms 2022;10:2070.
Kunzes A, Anila K, Savitri, Tek Chand B. Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh. LWT - Food Sci Technol 2016;66:428-35. doi: 10.1016/j.lwt.2015.10.057.
Nagaoka S, Hojo K, Murata S, Mori T, Ohshima T, Maeda N. Interactions between salivary Bifidobacterium adolescentis and other oral bacteria: in vitro coaggregation and coadhesion assays. FEMS Microbiology Letters 2008;281:183-9. doi: 10.1111/j.1574-6968.2008.01092.x.
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018;34:i884-90. doi: 10.1093/bioinformatics/bty560.
Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017;13:e1005595.
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068-9. doi: 10.1093/bioinformatics/btu153.
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75. doi: 10.1186/1471-2164-9-75.
van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Research 2018;46:W278-81. doi: 10.1093/nar/gky383.
Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Research 2023;51:W46-50. doi: 10.1093/nar/gkad344.
Min B, Yoo D, Lee Y, Seo M, Kim H. Complete genomic analysis of Enterococcus faecium heat-resistant strain developed by two-step adaptation laboratory evolution method. Front Bioeng Biotechnol 2020;8:828 doi: 10.3389/fbioe.2020.00828.
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015;31:3691-3.
Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Research 2018;47:D687-92. doi: 10.1093/nar/gky1080.
Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2019;48:D517-25. doi: 10.1093/nar/gkz935.
Johansson MHK, Bortolaia V, Tansirichaiya S, Aarestrup FM, Roberts AP, Petersen TN. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J Antimicrob Chemother 2020;76:101-9. doi: 10.1093/jac/dkaa390.
Consortium TU. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Research 2022;51:D523-31. doi: 10.1093/nar/gkac1052.
Tarique M, Ali AH, Kizhakkayil J, Liu SQ, Oz F, Dertli E, et al. Exopolysaccharides from enterococcus faecium and streptococcus thermophilus: bioactivities, gut microbiome effects, and fermented milk rheology. Food Chem X 2024;21:101073. doi: 10.1016/j.fochx.2023.101073.
Comerlato CB, Prichula J, Siqueira FM, Ritter AC, Varela APM, Mayer FQ, et al. Genomic analysis of Enterococcus durans LAB18S, a potential probiotic strain isolated from cheese. Genet Mol Biol 2022;45:e20210201. doi: 10.1590/1678-4685-gmb-2021-0201.
Salazar N, Gueimonde M, de Los Reyes-Gavilán CG, Ruas-Madiedo P. Exopolysaccharides Produced by Lactic Acid Bacteria and Bifidobacteria as Fermentable Substrates by the Intestinal Microbiota. Crit Rev Food Sci Nutr 2016;56:1440-53, doi: 10.1080/10408398.2013.770728.
Ayyash M, Stathopoulos C, Abu-Jdayil B, Esposito G, Baig M, Turner MS, et al. Exopolysaccharide produced by potential probiotic Enterococcus faecium MS79: Characterization, bioactivities and rheological properties influenced by salt and pH. Lwt 2020;131:109741. doi: 10.1016/j.lwt.2020.109741.
Egan K, Field D, Ross RP, Cotter PD, Hill C. In silico Prediction and Exploration of Potential Bacteriocin Gene Clusters Within the Bacterial Genus Geobacillus. Front Microbiol 2018;9:2116. doi: 10.3389/fmicb.2018.02116.
Teber R, Asakawa S. In Silico Screening of Bacteriocin Gene Clusters within a Set of Marine Bacillota Genomes. Int J Mol Sci 2024;25:2566.
Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial pan-genome. Proc Natl Acad Sci 2005;102:13950-5. doi: 10.1073/pnas.0506758102.
Fiore E, Van Tyne D, Gilmore MS. Pathogenicity of Enterococci. Microbiol Spectr 2019;7. doi: 10.1128/microbiolspec.GPP3-0053-2018.
Ramos S, Silva V, Dapkevicius MLE, Igrejas G, Poeta P. Enterococci, from Harmless Bacteria to a Pathogen. Microorganisms 2020;8. doi: 10.3390/microorganisms8081118.
Anadón A, Martínez-Larrañaga MR, Aranzazu Martínez M. Probiotics for animal nutrition in the European Union. Regulation and safety assessment. Regul Toxicol Pharmacol 2006;45:91-95. doi: 10.1016/j.yrtph.2006.02.004.
Rengaraj R, Mariappan S, Sekar U, Kamalanadhan A. Detection of vancomycin resistance among Enterococcus faecalis and Staphylococcus aureus. J Clin Diagn Res 2016;10:Dc04-6. doi: 10.7860/jcdr/2016/17552.7201.
Yoo IY, Kwon JA, Lee M, Jung S, Kim JO, Ha SI, et al. Prevalence and molecular characterization of vancomycin variable enterococcus faecium isolated from clinical specimens. Ann Lab Med 2024;44:450-4. doi: 10.3343/alm.2023.0430.
Wu X, Wu B, Li Y, Jin X, Wang X. Identification and safety assessment of Enterococcus thailandicus TC1 isolated from healthy pigs. PLoS One 2021;16e0254081. doi: 10.1371/journal.pone.0254081.
Coque TM, Patterson JE, Steckelberg JM, Murray BE. Incidence of hemolysin, gelatinase, and aggregation substance among enterococci isolated from patients with endocarditis and other infections and from feces of hospitalized and community-based persons. J Infect Dis 1995;171:1223-9. doi: 10.1093/infdis/171.5.1223.
Ahsan T, Hemel MMM, Sonia SJ, Shamsuzzaman SM. Distribution of Virulence genes among enterococcus species isolated from patients of urinary tract infection attended in a tertiary care hospital of Bangladesh. Mymensingh Med J 2024;33:107-15.
Tarek N, Azmy FA, Khairalla AS, Abdel-Fattah M, Jefri OA, Shaban M, et al. Genome sequencing of Enterococcus faecium NT04, an oral microbiota revealed the production of enterocin A/B active against oral pathogens. Heliyon 2023;9.
El Jeni R, Ghedira K, El Bour M, Abdelhak S, Benkahla A, Bouhaouala-Zahar B. High-quality genome sequence assembly of R. A73 Enterococcus faecium isolated from freshwater fish mucus. BMC microbiology 2020;201-12.
Ghattargi VC, Gaikwad MA, Meti BS, Nimonkar YS, Dixit K, Prakash O. Comparative genome analysis reveals key genetic factors associated with probiotic property in Enterococcus faecium strains. BMC genomics 2018;19:1-16.
Tareb R, Bernardeau M, Gueguen M, Vernoux JP. In vitro characterization of aggregation and adhesion properties of viable and heat-killed forms of two probiotic Lactobacillus strains and interaction with foodborne zoonotic bacteria, especially Campylobacter jejuni. J Med Microbiol 2013;62:637-49. doi: 10.1099/jmm.0.049965-0.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.