Molecular Analysis of Chloroquine and Sulfadoxine/Pyrimethamine Resistant Markers in Plasmodium Falciparum Isolated from Three Provinces in Southern Thailand
Abstract
Objective: This study investigated mutations in various genes associated with chloroquine (CQ) and sulfadoxine-pyrimethamine (SP) resistance in P. falciparum; including the P. falciparum chloroquine resistance transporter (pfcrt), P. falciparum multidrug resistance 1 (pfmdr1), P. falciparum dihydrofolate reductase (pfdhfr), and P. falciparum dihydropteroate synthase (pfdhps).
Material and Methods: A total of 104 P. falciparum samples were obtained from patients across three (Ranong, Surat Thani and Yala) provinces of southern Thailand; between 2012 and 2019. To assess the genetic polymorphisms, pfcrt K76T and pfmdr1 N86Y were identified using PCR-RFLP assay, and pfdhfr C59R and pfdhps K540E was identified using Semi-nested PCR and nucleotide sequencing.
Results: Genetic analysis revealed that 61 (58.65%) isolates were positive for pfcrt and 55 (52.88%) for pfmdr1. Notably, the Ranong province isolates showed high prevalence of pfdhfr 51I, 59R, 108N, and 164L mutations (IRN-L) along with pfdhps 540E mutation. The Surat Thani province isolates exhibited the highest frequency of quadruple mutations in both pfdhfr and pfdhps genes.
Conclusion: The surveillance guidelines and policy formulation of appropriate Malaria treatment strategies must be implemented in these locations.
Keywords
Full Text:
PDFReferences
Ministry of Public Health (MOPH). Yearly report malaria situation in Thailand [homepage on the Internet]. Nonthaburi: MOPH; 2023 [cited 2023 Jun 8]. Available from: https://malaria.ddc.moph.go.th/malariaR10/index_newversion.php
World Health Organization. Global report on antimalarial drug efficacy and drug resistance 2000-2010 [homepage on the Internet]. Geneva: WHO; 2010 [cited 2024 Apr 20]. Available from: https://www.who.int/publications/i/item/9789241500470
Valderramos SG , Fidock DA. Transporters involved in resistance to antimalarial drugs. Trends Pharmacol Sci 2006;27:594-601.
Cooper RA, Ferdig MT, Su XZ, Ursos LM, Mu J, Nomura T, et al. Alternative mutations at position 76 of the vacuolar transmembrane protein PfCRT are associated with chloroquine resistance and unique stereospecific quinine and quinidine responses in Plasmodium falciparum. Mol Pharmacol 2002;61:35-42.
Lim P, Chy S, Ariey F, Incardona S, Chim P, Sem R, et al. pfcrt Polymorphism and Chloroquine Resistance in Plasmodium falciparum Strains Isolated in Cambodia. Antimicrob Agents Chemother 2003;47:87–94.
Ibrahim ML, Steenkeste N, Khim N, Adam HH, Konaté L, Coppée JY, et al. Field-based evidence of fast and global increase of Plasmodium falciparum drug-resistance by DNA-microarrays and PCR/RFLP in Niger. Malar J 2009;8:32.
Mungthin M, Intanakom S, Suwandittakul N, Suida P, Amsakul S, Sitthichot N, et al. Distribution of pfmdr1 polymorphisms in Plasmodium falciparum isolated from Southern Thailand. Malar J 2014;13:117.
Sermwittayawong N, Nishibuchi M, Sawangjaroen N, Vuddhakul V. Characterization of malaria infection at two border areas of Thailand adjoining with Myanmar and Malaysia Southeast Asian J Trop Med Public Health 2015;46:551-7.
Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 2000;403:906–9.
Basco LK, Eldin de Pecoulas P, Wilson CM, Le Bras J, Mazabraud A. Point mutations in the dihydrofolate reductase-thymidylate synthase gene and pyrimethamine and cycloguanil resistance in Plasmodium falciparum. Mol Biochem Parasitol 1995;69:135-8.
Wang P, Read M, Sims PF, Hyde JE. Sulfadoxine resistance in the human malaria parasite Plasmodium falciparum is determined by mutations in dihydropteroate synthetase and an additional factor associated with folate utilization. Mol Microbiol 1997;23:979-86.
Chulay JD, Watkins WM, Sixsmith D. Synergistic antimalarial activity of pyrimethamine and sulfadoxine against plasmodium falciparum in vitro. Am J Trop Med Hyg 1984;33:325–30.
Plowe CV, Kublin JG, Doumbo OK. P. falciparum dihydrofolate reductase and dihydropteroate synthase mutations: epidemiology and role in clinical resistance to antifolates. Drug Resist Updat 1998;1:389–96.
Triglia T, Wang P, Sims PF, Hyde JE, Cowman AF. Allelic exchange at the endogenous genomic locus in plasmodium falciparum proves the role of dihydropteroate synthase in sulfadoxine-resistant malaria. EMBO J 1998;17:3807-15.
Berglez J, Iliades P, Sirawaraporn W, Coloe P, Macreadie I. Analysis in escherichia coli of plasmodium falciparum dihydropteroate synthase (DHPS) alleles implicated in resistance to sulfadoxine. Int J Parasitol 2004;34:95-100.
Imwong M, Jindakhad T, Kunasol C, Sutawong K, Vejakama P, Dondorp AM. An outbreak of artemisinin resistant falciparum malaria in Eastern Thailand. Sci Rep 2015;5:17412.
Boonyalai N, Thamnurak C, Saingam P, Ta-Aksorn W, Arsanok M, Uthaimongkol N, et al. Plasmodium falciparum phenotypic and genotypic resistance profile during the emergence of piperaquine resistance in Northeastern Thailand. Nature 2021;11:13419.
Khammanee T, Sawangjaroen N, Buncherd H, Tun AW, Thanapongpichat S. Molecular surveillance of pfkelch13 and pfmdr1 mutations in plasmodium falciparum Isolates from Southern Thailand. Korean J Parasitol 2019;57:369–77.
Snounou G, Viriyakosol S, Zhu XY, Jarra W, Pinheiro L, do Rosário VE, et al. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 1993;61:315–20.
Lopes D, Rungsihirunrat K, Nogueira F, Seugorn A, Gil JP, do Rosário VE et al. Molecular characterisation of drug-resistant Plasmodium falciparum from Thailand. Malar J 2002;1:12.
Schneider AG, Premji Z, Felger I, Smith T, Abdulla S, Beck HP, et al. A point mutation in codon 76 of pfcrt of P. falciparum is positively selected for by chloroquine treatment in Tanzania. Infect Genet Evol 2002;1:183–9.
Figueiredo P, Benchimol C, Lopes D, Bernardino L, do Rosário VE, Varandas L, et al. Prevalence of pfmdr1, pfcrt, pfdhfr and pfdhps mutations associated with drug resistance, in Luanda, Angola. Malar J 2008;7:236.
Tahar R, Basco LK. Molecular epidemiology of malaria in Cameroon. XXVII. Clinical and parasitological response to sulfadoxine-pyrimethamine treatment and plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase alleles in cameroonian children. Acta Trop 2007;103:81-9.
Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell 2000;6:861-71.
Sidhu AB, Verdier-Pinard D, Fidock DA. Chloroquine resistance in plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science 2002;298:210–3.
Singh G, Singh RN, Urhekar A, Rane K. Gene sequence polymorphisms mutations in PFMDR-1 and PFCRT-O genes of plasmodium falciparum. Int J Curr Microbiol App Sci 2016;5:451–8.
Rungsihirunrat K, Chaijareonkul W, Seugorn A, Na Bangchang K, Thaithong S. Association between chloroquine resistance phenotypes and point mutations in pfcrt and pfmdr1 in plasmodium falciparum isolates from Thailand. Acta Tropica 2009;109:37–40.
Muhamad P, Chaijaroenkul W, Phompradit P, Rueangweerayut R, Tippawangkosol P, Na-Bangchang K. Polymorphic patterns of pfcrt and pfmdr1 in plasmodium falciparum isolates along the Thai-Myanmar border. Asian Pac J Trop Biomed 2013;3:931-5.
Srimuang K, Miotto O, Lim P, Fairhurst RM, Kwiatkowski D, Woodrow CJ, et al. Analysis of anti-malarial resistance markers in pfmdr1 and pfcrt across Southeast Asia in the tracking resistance to artemisinin collaboration. Malar J 2016;15:931–5.
Norahmad NA, Mohd Abd Razak MR, Abdullah NR, Sastu UR, Imwong M, Muniandy PK, et al. Prevalence of plasmodium falciparum molecular markers of antimalarial drug resistance in a residual malaria focus area in Sabah, Malaysia. PloS One 2016;11:e0165515.
Lê HG, Naw H, Kang JM, Võ TC, Myint MK, Htun ZT, et al. Molecular profiles of multiple antimalarial drug resistance markers in plasmodium falciparum and plasmodium vivax in the Mandalay Region, Myanmar. Microorganisms 2022;10:2021.
Andriantsoanirina V, Durand R, Pradines B, Baret E, Bouchier C, Ratsimbasoa A, et al. In vitro susceptibility to pyrimethamine of DHFR I164L single mutant plasmodium falciparum. Malar J 2011;1:283.
Kümpornsin K, Kotanan N, Chobson P, Kochakarn T, Jirawatcharadech P, Jaru-Ampornpan P, et al. Biochemical and functional characterization of plasmodium falciparum GTP cyclohydrolase I. Malar J 2014;13:150.
Pathak A, Mårtensson A, Gawariker S, Sharma A, Diwan V, Purohit M, et al. Stable high frequencies of sulfadoxine–pyrimethamine resistance associated mutations and absence of k13 mutations in plasmodium falciparum 3 and 4 years after the introduction of artesunate plus sulfadoxine–pyrimethamine in Ujjain, Madhya Pradesh, India. Malar J 2020;19:290.
Sugaram R, Suwannasin K, Kunasol C, Mathema VB, Day N, Sudathip P, et al. Molecular characterization of plasmodium falciparum antifolate resistance markers in Thailand between 2008 and 2016. Malar J 2020;19:107.
Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in plasmodium falciparum malaria. N Engl J Med 2014;371:411–23.
Kuesap J, Suphakhonchuwong N, Kalawong L, Khumchum N. Molecular markers for sulfadoxine/pyrimethamine and chloroquine resistance in plasmodium falciparum in Thailand. Korean J Parasitol 2022;60:109–16.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.